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What is the connection between ballistic deposition and the Kardar-Parisi-Zhang equation?
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Ballistic deposition(BD) is believed to belong to the Kardar-Parisi-ZhahdPZ) universality class. In this
paper we study the validity of this belief by rigorously deriving a continuum equation from the BD micro-
scopic rules, which deviates from the KPZ equation. We show that in one dimension and in the presence of
noise the deviation is not important. This is not the case in the absence of noise. In more than one dimension
and in the presence of noise we obtain an equation that superficially seems to be a continuum equation but in
which the symmetry under rotations around the growth direction is broken.
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l. INTRODUCTION symmetries and short-range “interactions” and therefore

N heni f ibri ; hh should belong to the same universality class. In higher di-
Kinetic roughening of nonequilibrium surface growth has yyansions the lattice structure on which the BD model is

been of great interest in recent years. The kinetic growthyefined may break rotation symmetry around the growth di-
processes have been intensively studied via various discrefgction, At first sight this may not seem to be a problem. An
models and continuum equations and exhibit nontrivial scalising model is also defined on a lattice but in the long-
ing behavior[1-5). The surface widthW, which is the stan-  wavelength limit the rotational symmetry is recovered and
dard deviation of the surface height, scales \WL,t)  the model is equivalent to a field theory which is rotationally
~Lg(t/L?, where the scaling functiog(u) is constant for invariant. We will come back to this point later. The third
u>1 and behaves like/® for u<1. Since the growth is way is to use massive simulations to obtain and compare the
independent of the system sizeat the beginning of the exponents of the two systemgThis is somewhat self-
process, the exponents must obey the scaling relgfion defeating as the whole usefulness of the concept of univer-
=alz. The scaling behavior of the growth is characterized bysality class is in predicting the exponents in one model given
the roughness exponent the growth exponeng, and the the exponents of another. Still in some cases it may be the
dynamical exponeng, and these exponents determine theonly practical hope to determine as a matter of principle if
universality class. two models belong to the same universality cla3sble |

The discrete ballistic depositioiBD) growth model presents the exponents obtained by the BD model in one,
[2,6,7 and the Kardar-Parisi-Zhan¢g{PZ) equation[8] de-  two, and three dimensions by various authors.
scribing continuous growth, to be described in the following, In one dimension the exact values of the KPZ exponents
are believed to belong to the same universality class. Suchare known to bex=1/2 andg=1/3. Theresults for BD are
relation can be exploited in many ways. For example, simuscattered but two of the resulf$1,12 are close enough to
lations of the BD system that are comparatively fast maythe exact KPZ values. In two dimensions the values of the
serve to describe the numerically more demanding KPZ sysKPZ systems are not known exactly. There is a large diver-
tem. What is the evidence that the two models belong to the ) _ ) _
same universality class? A number of ways may be consid- ABLE | Scaling exponents obtained by simulations for the
ered to show that two models belong to the same universality?1Stic deposition model fod=1, 2, and 3 dimensions.
class. The most direct is to show that the two models corre-

spond to the same fixed point systetin the case under d “« B z Reference
consideration it is not a Hamiltonian that describes the sys- 141 0.42 0.3 [9]
tem) To the best of our knowledge, this has never been done 4, 0.3 [10]
for BD and KPZ models. Even for systems where the study
is much more established, showing that two models are in 1+1 0.47 0.33 [11]
the same universality class is not entirely trivial. Another 1+1 0.506 0.339 [12]
possible way is to assert that two models of the same dimen- 1+1 0.45 0.32 1.40 (13]
sion possessing the same symmetries and range of interac—2+l 0.33 0.24 [10]
tion are in the same universality clags8,19. This is based
: , 0.3 0.22 [11]
also on scaling arguments that check the relevance of various
possible terms in the hydrodynamic linf]. It is clear that 2+1 0.35 0.21 (14]
in one dimension the BD and KPZ models have the same 2+1 0.36 [12]
2+1 0.26 0.21 1.24 [13]
2+1 0.38 0.229 1.62 [15]
*Electronic address: eytak@post.tau.ac.il 3+1 0.12 [13]
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sity of results that range between 0.18 and 0.4df@nd 0.1 ]
and 0.25 forB [16] (these results were obtained by a direct - =
integration of the KPZ equation or the equivalent directed N H

polymer problem However, it usually accepted that= 1 1 O
~0.4 andB3=0.24 are the KPZ exponents in 2+1 dimen- -1 0 iet i1 i i1 i1 i+
sions. This result is also very close to that of Forrest and

Tang who simulated the single-step solid-on-sal809 (a) (b) (©)

model(which is believed to be in the KPZ universality class ) ) ]
[17] and gota=0.385 andg=0.240. FIG. 1. Schematic representation of the next-nearest-neighbor

&)allistic depositionfNNN BD) model. A particle falls vertically and
sticks to the first site along its trajectory that has an occupied near-
est neighbor. The particle is allowed to stick to a diagonal neighbor
as well.

Again the results for the BD model are very scattered, an
although there is one resiitQ] that is close enough fg8 to
the above-mentioned results, the scaling relat@®na/(2
—a) is only poorly obtained. This is consistently true also for
all the other results in two dimensions. Can the results of BD .
simulations serve as serious evidence that the BD model is in (n(r,t)y =0,
the universality class of the KPZ model? In one dimension
our answer is maybe. In more than one dimension our an- NI ., ,
swer is no. This is not to say whether indeed the BD model (n(F,O7(r" 1)) = 2Dod(r = 1) 8t~ t'). 3)
is in a different universality class or that the results of simu- In the last few years most of the efforts in estab“shing
lations are not good enough or both fact the large scatter direct connections between discrete models and continuum
of the results suggests that at least some of the simulationgyuations have been directed towards developing a general
are indeed not good enougfthis should be compared with procedure via formal expansions of discrete equations of mo-
the very accurate exponents obtained in the study of criticaion [20,22-3]. Usually, the derivation of the continuum
phenomena of translational invariant systems. For those sygquation is based on regularizing and coarse graining dis-
tems results of very different methods, such as highcrete Langevin equations that are obtained from a Kramers-
temperature series, momentum-space renormalization, angoyal expansion of the master equation. In simple words,
real-space renormalization, are known to converge on thgansition probabilities are calculated from the microscopic
same values with much higher accuracy. rules of the model for any given discrete height configuration

This unfortunate situation suggests a fourth route in whichfh.1. These expressions usually contain discteteleavisidg
the question might be answered and this is a direct derivatiognd s (Dirac) functions. But since the transition probabilities
of the KPZ equation from the BD model in the continuum gre supposed to be continuous functigss that the expan-
limit. Before discussing previous work in this direction and sjon that is used there is meaningfudome coarse-graining

our present one, we first describe in short the two modelgrocedure is needed. More specifically, this involves expan-
under consideration. sions of the form

The BD model in 1+1 dimensiongctually on a two-
dimensional square lattiteean be described as follows. At o
timet, the height of the interface at sitas h;(t). We choose o) =1+ AX, (4)
a random position above the surface and allow a particle to k=1
fall vertically toward it. The particle sticks to the first site

along the trajectory that has an occupied nearest neighbor. Y originally suggested i[23]. Sometimes a less restricted

no such neighbor exists, it lands on the surface below. Actusg,m 0(x) =1+ A< is used. Other suggestions include
ally, the version just described is called the nearest-neighbor -

(NN) BD model. In another version of the model, also
known as the next-nearest-neighi®NN) BD model [2],
which will interest us in this paper, the particle is allowed to
stick to a diagonal neighbor as well, as shown in Fig. 1. Atwhere C is an arbitrary positive parameter, with the exact
time t+1, a columni is chosen at random, and the height 6(X) function being obtained in the limi€—c [26]. C is

0(x) =[1 + tanHCx)]/2, (5)

hi(t+1) is then given by then used in the expansion as an uncontrolled parameter.
Others[24] use the shifted formd(x)=lim¢_,.[1+tanHC{x
hi(t + 1) = max{hi_y(t), hi(t), hia (O} + 1. (D +ap)/2 with ae(0,2] or a modified version using

As mentioned above, the continuum equation that is be@'ctanCx) [27] or erf(Cx) [29] instead of tanfCx) (each
lieved to capture the essential dynamics of the BD models i¥€rsion has its advantages Eg. (5). .
the famous KPZ8] equation, given by In some cases the master equation approach is problem-
atic, as in the case of deriving the KPZ equati8pfrom the
ballistic deposition moddl25]. Thus a similar approach, yet
more appropriate for that specific case was developed. The
method is based on dealing directly with the discrete Lange-
whereh(r,t) is height of the interface at the poifand time  vin equation rather than with its associated master equation.
t, and (r,t) is a noise term such that Still, expansions like

‘;—T(rﬁt) = vVh(r,t) + %(Vh)2 + (1), (2)
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Z o P (using [32,33) that when the noise is shut down and the
0(x—a):0(x)+2—| — (6) dynamics becomes deterministic, then the difference be-
n=a b9y ly=x tween the BD and KPZ models is very important. In Sec. IV,

were used. A different, yet closely related Langevin-based'® make a step forward towards a derivation of a continuum

approach used the following representation of the max funcgduation that emanates from the BD model in higher dimen-

tion [29,3Q: sions. However, t_he equati(_)n we find reflects the underlying
structure of the discrete lattice, in the sense that the equation
maxA,B,C} = lim & In{e”V® + eB/s + %2}, (7)  depends on the directions of the coordinate system induced

e—0" by the lattice. Therefore, the equation we obtain, which

breaks rotational symmetry, cannot be conclusively related to
the KPZ equation. At the end, in Sec. V, a brief summary of
the results obtained in this paper is presented.

in order to go from the discrete BD model to the continuum
KPZ equation. Lately31], influenced by the last representa-
tion, the Edwards-Wilkinsofl] equation was derived from a

discrete model using II. DERIVATION OF A CONTINUUM EQUATION
(+a)le 4 q IN ONE DIMENSION
= 0} - maxXx} = lim in € T L . . .
60) = maxx+, e e=+1 ||’ We begin with the one-dimensional discrete model
(8) hi(t + 1) = max{h;_4(t),hi(t), hi,1 (D} + 7(D), 9
wherea is any constant in the intervad, 1]. whereh;(t) is the height of a surface at lattice positioand

In spite of these many new and interesting derivationstime t (the time is discrete as wgllin addition, 7(t) is a
one can easily point out three main drawbacks of this lashite noise term satisfying

approach. First, in many cases the derivation is performed in (7())=0
one dimension, where higher dimensions are not discussed at ' '
all or, specifically, known to cause fatal difficultiésee Ref. (O 7 () = 2D 516y (10)

[30], for example.

Second, obviously the mathematics used in the derivatiofThis discrete model is a formal expression forraparticle
is not so rigorous. For example, an expansion like the on®INN BD model[see Eq(21) in Ref.[30]]. It is well known
given in Eq.(4) is problematic because the Heaviside func-that the fact that here we deposit more than one particle per
tion is certainly not analytic around zero. Another example isunit time is not important for the universal behavior of the
when taking an expression like E@) and expanding it for model. Actually the same discrete model is used to describe
small C—while the limiting procedure that is needed for the formation of foam[6].
equality to hold require€ — co. First we represent the mgx operator using Heaviside

Third, since artificial parameters liké and e that cannot  fynctions
always be removed later are present it is not possible to infer
the macroscopic quantitig€such as the diffusion coefficient maxa,b} = af(a-b) +bé(b-a). (11)
from the microscopic rules. Thus, for three arguments we also get

In what follows we will question the relation between the
KPZ and BD models and claim that it is not a coincidence ~ Maxa,b,c}=af(a-b)é(a-c)+bo(b-a)6(b-c)
that such a formaland "rigorous’) derivation was not found. +co(c-a)b(c-b). (12)
In Sec. Il we will show that strictly speaking the continuum
model that describes BD in one dimension is not the KPZNow we represent the Heaviside function using the sign
equation, but rather an equation witRh| instead of the function
quadratic(Vh)? term. Then, we will claim that in the case of 1 1
stochastically driven growth, the difference between the two 0(x) = = + =sgn(x). (13

; . . . i 2 2

equations is not dramatic and just modifies the value of the
coupling constant in the KPZ equation. In Sec. Ill we showApplying these representations to £f) we get

max{hi_4(t), hi(t), hi.4 ()} = hi—l(t)%_{l +sgrihi_1(t) = hi(H)]H1 + sgrihi_y(t) — hia (O]} + hi(t)%{l +sgrihi(t) - hi_(t)]H{1

+sgrihi(t) — hia (O]} + hi+1(t)%_{1 +sgiihi(t) — - (O 11 + sgrihi () - h(©)]}- (14)

Thus, after some simple algebra,
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1 1 1 1
(E+ 1) = (0 = 5 Tha(0) = 200+ Biea®] = 300 + [0 = hs(OIsgri(® = oy + 5[ha(®) = hoa(sgrihy. (0
]+ 5120 = OIS0 = RO+ h (OSITR - h x0T - hy (0]

- %hi(t)Sgr{hi(t) = hi-a(M]sgrihia(t) — hi()] + %hiﬂ(t)sgr{hm(t) = his(®]sgrihi () —hi® ]+ 7(t). (15

The last expression is written in such a way that identifyingThen, the noise amplitude is unaffected by the coarse grain-
discrete derivatives is easy. Therefore, denoting the spatidhg. Finally, we would like to identify the coupling constant
and temporal increments hyx and At, and using the sim- X\ in the KPZ equatiori2). However, since the nonlinear term
plifying fact sgriax) =sgr(x) (whena>0), we get in Eq.(17) is not in a KPZ form\ cannot be just read from
the equation. Thus, we push further the idea presented in the

(;_T(X’t) _ (222{1 . sgﬁ(j—:)}%(xﬂ) . %‘ f;_z previous paragraph and make the identification
Vh V hf?
1 |Vh| - |Vh|2’ (18
. (16) (Vh)  (VhP)
where(---) means steady-state averaging. The last equation
Note that leads td Vh|= ({| Vh|}/{| Vh|?)(Vh)2. Plugging this estimate
1 x+£0 into Eq. (17) gives the predictiol\/2=(|Vh|)/{|Vh|?) for
sgri(x) = 0’ -0 ' the coupling constant of the KPZ equati®). The meaning
» X=0. of this expression is that the KPZ coupling constant that

Thus, for a Stricﬂy nonsmooth Surfac'&_, a surface that is describes the surface that grows under the BD model is ob-
not flah, almost everywhere we can use the replacemerf@ined by calculating the two quantiti¢ h|) and(|Vh|?) in
sgrf(sh/ax)=1 in order to further simplify Eq(16). In ad- a BD simulation(in steady stafeand plugging the obtained
dition, since in the discrete model we actually tabk=At  averages into the expression given aboveNt2.
=1, we get the final result The last prediction has been checked numerically by us.
We grew a one-dimensional interface on a discrete lattice
with linear sizeL=1024 using the microscopic rules of the
BD model [given by EQq.(9) abovd. Using this simulation
_ o _ we found(|Vh|)=0.4705 and(|Vh|?=0.4639, which leads
Th.'s equation is a result of a stralghtfor_ward exact coarsg, o predictiol\ =2.17. Using an inverse method—that is,
graining of Eq.(9)..Thus, one can pe convinced that the BD“guessing” the best macroscopic parameters that recover the
model (at least thisn-particle version of it does not lead same growth processee Refs[2,21))—we found\=2.27
exactly to the KPZ equation. This fact might explain theWhich supports the rough estima,\te)of/ve suggested a.bO\,/e
Qifficulties encountered in the past while deriving KPZ equa- Note that if we wanted to use the same kind of replaée-
tlonSfrom the BD model. h di . r]went of |[Vh| by (Vh)? not in steady state but say at the
s stgmg%ni/s ?;%lég];r;;s tf?ggl?rﬁizr;ae}}t Olélraggec;f Itl;r]]eenKSIIZ?Zn E%)eginning of the growth, the coefficient would have to be a
yster - Y . time-dependent function that will eventually approach the
equa_mon. This IS suppor_ted by the results of Fgéﬁ], which steady-state value that follows from Ed.8). Thus it might
studied Langevin equationsf the KPZ type with a gener- be tempting to speculate that the short-time dependence of

; u . .

alized | Vhl nonlinearity. They concluded that no matter the coefficient might be the reason for some problems en-

what value ofu was taken, KPZ behavior was revealed, as . . . . S
countered in simulations in the numerical determination of

long as the noise term is presqiihe case of no noise is

interesting by itself, and will be discussed in Sec. Il below the exponeng. .

Thus, this fundaméntal observation of Amar and Farf8(§] _ Up to now we have focused on the common characteris-

estaBIishes the link between E4.7) and the KPZ equation tics of the. BD and KP.Z models. Hoyveyer, as will be seen in
' ' the following two sections, if the noise is turned off or if we

by simply identifyingu=1 in that equation. Hence, the route . . ; S .
between the BD and KPZ models in one dimension is nowd® to higher dimensions, significant differences between the
o models can be found.

understood, and the common knowledge about the BD mod
is justified.

Now, it would be interesting t_o_complete the picture and Ill. DETERMINISTIC ELATTENING
to extract the macroscopic coefficients that describe the con-
tinuum KPZ equation that is related to the BD model. First, In this section we discuss the dynamics of the discrete BD
the diffusion coefficient can be inferred easily from ELjr). model and the continuum model witR h|* nonlinearity for

dh 1é%h
—(xt) = =—(x,t) +
at(x ) zaxz(x )

aX

+ 7(x,1). (17)
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FIG. 3. Scaling plot for the deterministic NNN BD model given
by Eq. (9) for L=256, 512, and 1024 usirg=1.
0.16 ' .
Influenced by this work, Amar and Famil33] made a
o 012 systematic study of such surface growth equations with a
- generalized nonlinearity and found good agreement between
= the scaling relation and the numerical integration of @§).
s 008 We al formed ical i i ing th
= e also performed a numerical integration, using the same
integration scheme as in Rg83] [the coefficientsy andg
0.04 were taken from Eq(17) and using the result of the previous
sectiorj for the caseu=1 [Eq. (17)] and u=2 (KP2) in 1
% 0 o2 03 04 +1 dimensions. We also used a rough surface wiﬂ‘% as
{32 an initial condition. A scaling plot of our results for the sur-

face widthW(L ,t) for u=1 versug/L with z;=1 is given in
FIG. 2. Scaling plot for the deterministic equati¢t9) for L Fig. 2a), and a similar scaling plot fop=2 with Zdzg is
=256, 512, and 1024 witfe) =1 usingzz=1 and with(b) u=2 shown in Fig. 2b).
using Zd=§- As one can see, the scaling is good in both cases, in agree-
ment with the scaling relatiof20) and therefore consistent
n=2 (KPZ) and for u=1, when the noise term that appearsWith Refs.[32,33. Thus, the difference between the deter-
in them is eliminated. This limit mimics the physical sce- ministic dynamics of the KPZ equation and that of Efj7)
nario when the deposited materials stop falling, and the inis now self-evident and not new. Two questions should be
terface relaxes to a flat surface, due to its diffusive term. Irasked here. Our derivation of E(L7) does not depend on
the previous section we showed that in one dimension thée presence of noise. Therefore, we might expect that even
KPZ model and the continuum version of the BD model arewhen deterministic dynamics is considered, discrete BD will
equivalent in steady state, where the flattening of the surfacee equivalent to thex=1 case rather than to the=2 case
due to diffusion is balanced by the external noise. It would(KP2). The first question is whether this is indeed the case.
be also interesting to study the relation between the twdhe second question regards the predicted values for the dif-
models in the absence of noise. fusion coefficient(namely,v:%) and the couplingi.e., the
The starting point of this discussion is the observation ofcoefficient of the |Vh|* term—namely, g=1) for the
Krug and Spohn32] regarding a deterministic continuum n-particle NNN BD model that we read from E@L7). The
equation of the general form question is whether this prediction is a sensible one.
In order to answer these questions we implemented the
Jh NNN BD model[whose sticking rules are given by E®)]
T vW2h+g| V h* (19 on a two-dimensional square latti¢g+1 dimensionsand

measured the surface widW(L,t) of the flattening surface,

using a rough surface With:% as an initial conditionjust

like the continuum models aboyeNe present the results in
ig. 3.

As can be seen in Fig. 3, the deterministic dynamics of
the discrete model is evidently the one we have seen for the
) p=1 continuum equation, since the data collapse in the scal-

Zg=min{2,u(1 - a) + a} (200 ing plot with zy=1 is good. Moreover, Figs.(d) and 3 look
pretty much the same. The main difference between the two

should hold, wherey is a dynamic exponent for determinis- is the rounded tail in Fig. (@) aroundt/L=0.5 compared to
tic evolution, which, similar to the stochastically driven case,the sharp transition in Fig. 3. This difference can be ac-
determines the time scale of the decaying wigtbe Fig. 2 counted for by the fact that the numerical integration of the

(whereu= 1), which describes the smoothing of an initially
rough surface under deterministic growth. They argued th
if the initial surface has roughness exponentthe scaling
relation
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continuum equation used a small time incremegkit=0.05 tion is not exactly the same, and the resulting continuum
while the discrete growth model used a much larger onequation is not a simple generalization of the one-
(At=1). This implies a better temporal resolution arounddimensional equatiofil?).
t/L=0.5 by numerical integration when compared to the We begin with then-particle NNN BD model ind dimen-
simulation. In addition, the similarity between the two scal-sions(discretized on a cubic hyperlattice
ing plots means that the predicted macroscopic quantities are
consistent with the results obtained from the simulation.

In this section we studied the difference between the de- hy(t + 1) = maxhq(t), hrz (1), he, (1), ..., hrg (D), hes (O}
terministic versions of the BD and KPZ models. We also
showed that Eq(17) captures the dynamical behavior of the + (1), (21)
BD model even in the deterministic regime. This discussion
served another purpose—namely, of providing a numerical
support for thev and\ we found from the formal derivation. Where; is a unit vector in theth direction.

As in Sec. Il, using Eqs(12) and (13), coarse graining
(spacg, and using the simplifications s@x)=sgr(x) (for

In this section we generalize the formal derivation givena+ 0) and sgi(dh/dx,)=1 (which is again true almost any-
in Sec. Il to higher dimensions. As will be seen, the deriva-wherg, we get

IV. RESULTS FOR HIGHER DIMENSIONS

‘ ah\ ] gh  ah gh ah ah
220h(t+1) =22, { heg (] 1+ r(—)] {1+ ———)Hu r(—+—>}+hut[1— r(—)]
At+1) El rxi()|: SO JH1 S0 5% ox 9 5% ox () 1-son o
j#i
‘ gh  ah gh  ah
X 1- —_— - 1- —+— + mt). 22
Jl:{|: s9 (9Xi (QXJ>:||: 9 (7Xi C7X]>:| 77F() ( )
i
Using 1+sgiix) =26(%x)
[
we get <2 (lon] |on gh
hAt+1) = o|—|—-|— hes (D) 6] —
wrn=3 11|22 - | 22| )| mrtoo{ 20
d j#i
hit+1)=2 h~~(t)0(a—h> ah
' ol IR a%; +hr~_;(i(t)0<— 5)] + 7:(1). (25)
1
x[1 [9(a—h - a—h> a(a—h + a—h)} Using once again the relatio?(x):é[1+sgr(x)] and reorga-
=1 9% 9%/ \dX X nizing the last equation leads us to
j#i
d
dh Jdh dh d d
. - 0 1 dh dh
+hr_xi(t)6< axi>j1:[1[6( (9Xi+(9xj) hr{t+1):521_[0< x| " lox ){hmi(t)—th(t)
j#i i=1 j.=1. i j
J#i
Jh dh . dh ah “
X0<_¢9_xi_a_xj” + 7:(1), (23) +h,-_;(i(t)+2&—Xisgr-<&—xi + 2hAt) | + (1),
(26)
where 7:(t)=2"27t). Notice that Coarse graining in both space and time gives us the final
result
6(a) fa+ ) 6a—x) = 6(a) o(a - |x)) = 6(a) &(|al - [x]),
(2) 6(a+x)6(a-x) = 6(a) o(a— [x|) = 6(a) 6(|al - X)) N ‘9—h(rt)—§d‘,(5@+ h )1510( o] 07_“)
(24 gt G \2a¢  |ax|/i; \lax| |ax
i
and thus + (r ). (27
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This equation might seem messy for a second. HoweveiThe symmetry argument does not work as there is a symme-
it has a very simple structure. First, far=1 it collapses try not shared by the two models. Our final conclusion is that
trivially to Eq. (17). Then, in higher dimensions, the expres- we do not see, at present, any compelling reason for the two

sion models to belong to the same universality class.
< (lan| |an
H o|— |- |— V. SUMMARY AND CONCLUSIONS
j=1 d X; (E)XJ
j#i In this paper we discussed the connection between a dis-

crete growth model, the next-nearest-neighbor ballistic depo-
gition, and a continuum equation, the Kardar-Parisi-Zhang
equation. It has been believed for the last two decddgs
that the BD model belongs to the KPZ universality class;
however, a formal derivation was lacking. In this work, we
show that the absence of a formal derivation is not acciden-
tal, but rather reflects significant differences between the
Actually, taking a glance at the original discrete model, thiscontinuum equation that describes the BD model and the
result is not such a surprise since both formulations contaikpz equation. This difference, which is mild in one dimen-
this “maximal” growth ingredient in them. sion in the presence of noise, may become crucial in higher
The above is in a sense not really a continuum equation igimensions. It is also reflected in the different deterministic
dimension larger than 1, since the directions of original lat-one-dimensional flattening of the surface, although this is not
tice axes are still present and the symmetry under rotationsyrprising. Our main conclusion is that mainly due to the
present in the KPZ model is not present in our &Y). This  form of our continuum equation in dimensions higher than 1,
means that the two models have different symmetries anghich breaks the rotation symmetry, the burden of proof has
therefore there is na priori reason for them to belong to the shifted and heavy simulations are needed, in order to obtain
same Universality CIaS$ThiS situation is very different from the BD exponents to an accuracy that will enable to answer
what happens, say, in the Ising model, where the discret@hether it belongs to the KPZ universality class ¢ 1 or
Znilong—ai]? [n(i) being a nearest neighbor df which is  not. The goal of such simulations should be an accuracy
not rotationally invariant, is safely replaced Pyo]?, which  compared to that in critical phenomena. If that is achieved,
is rotationally invarian). The situation as we see it is the we will be able to tell with much higher certainty if the two
following: None of the four suggested routes to checkmodels belong to the same universality class or not.
whether the two models belong to the same universality class
yields a convincing answer. To our knowledge a fixed point ACKNOWLEDGMENTS
system corresponding to both systems is not known. In spite
of the fact that a BD simulation is relatively simple, it seems One of us(M.S.) would like to thank C. Oguey and N.
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picks the directionm in space along which the gradient is
maximal, and the considered part of the local growth rate ha
a contribution from that direction alone,
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