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Ballistic deposition(BD) is believed to belong to the Kardar-Parisi-Zhang(KPZ) universality class. In this
paper we study the validity of this belief by rigorously deriving a continuum equation from the BD micro-
scopic rules, which deviates from the KPZ equation. We show that in one dimension and in the presence of
noise the deviation is not important. This is not the case in the absence of noise. In more than one dimension
and in the presence of noise we obtain an equation that superficially seems to be a continuum equation but in
which the symmetry under rotations around the growth direction is broken.
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I. INTRODUCTION

Kinetic roughening of nonequilibrium surface growth has
been of great interest in recent years. The kinetic growth
processes have been intensively studied via various discrete
models and continuum equations and exhibit nontrivial scal-
ing behavior[1–5]. The surface widthW, which is the stan-
dard deviation of the surface height, scales asWsL ,td
,Lagst /Lzd, where the scaling functiongsud is constant for
u@1 and behaves likeub for u!1. Since the growth is
independent of the system sizeL at the beginning of the
process, the exponents must obey the scaling relationb
=a /z. The scaling behavior of the growth is characterized by
the roughness exponenta, the growth exponentb, and the
dynamical exponentz, and these exponents determine the
universality class.

The discrete ballistic deposition(BD) growth model
[2,6,7] and the Kardar-Parisi-Zhang(KPZ) equation[8] de-
scribing continuous growth, to be described in the following,
are believed to belong to the same universality class. Such a
relation can be exploited in many ways. For example, simu-
lations of the BD system that are comparatively fast may
serve to describe the numerically more demanding KPZ sys-
tem. What is the evidence that the two models belong to the
same universality class? A number of ways may be consid-
ered to show that two models belong to the same universality
class. The most direct is to show that the two models corre-
spond to the same fixed point system.(In the case under
consideration it is not a Hamiltonian that describes the sys-
tem.) To the best of our knowledge, this has never been done
for BD and KPZ models. Even for systems where the study
is much more established, showing that two models are in
the same universality class is not entirely trivial. Another
possible way is to assert that two models of the same dimen-
sion possessing the same symmetries and range of interac-
tion are in the same universality class[18,19]. This is based
also on scaling arguments that check the relevance of various
possible terms in the hydrodynamic limit[2]. It is clear that
in one dimension the BD and KPZ models have the same

symmetries and short-range “interactions” and therefore
should belong to the same universality class. In higher di-
mensions the lattice structure on which the BD model is
defined may break rotation symmetry around the growth di-
rection. At first sight this may not seem to be a problem. An
Ising model is also defined on a lattice but in the long-
wavelength limit the rotational symmetry is recovered and
the model is equivalent to a field theory which is rotationally
invariant. We will come back to this point later. The third
way is to use massive simulations to obtain and compare the
exponents of the two systems.(This is somewhat self-
defeating as the whole usefulness of the concept of univer-
sality class is in predicting the exponents in one model given
the exponents of another. Still in some cases it may be the
only practical hope to determine as a matter of principle if
two models belong to the same universality class.) Table I
presents the exponents obtained by the BD model in one,
two, and three dimensions by various authors.

In one dimension the exact values of the KPZ exponents
are known to bea=1/2 andb=1/3. Theresults for BD are
scattered but two of the results[11,12] are close enough to
the exact KPZ values. In two dimensions the values of the
KPZ systems are not known exactly. There is a large diver-
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TABLE I. Scaling exponents obtained by simulations for the
ballistic deposition model ford=1, 2, and 3 dimensions.

d a b z Reference

1+1 0.42 0.3 [9]

1+1 0.3 [10]

1+1 0.47 0.33 [11]

1+1 0.506 0.339 [12]

1+1 0.45 0.32 1.40 [13]

2+1 0.33 0.24 [10]

2+1 0.3 0.22 [11]

2+1 0.35 0.21 [14]

2+1 0.36 [12]

2+1 0.26 0.21 1.24 [13]

2+1 0.38 0.229 1.62 [15]

3+1 0.12 [13]
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sity of results that range between 0.18 and 0.4 fora and 0.1
and 0.25 forb [16] (these results were obtained by a direct
integration of the KPZ equation or the equivalent directed
polymer problem). However, it usually accepted thata=
,0.4 andb=0.24 are the KPZ exponents in 2+1 dimen-
sions. This result is also very close to that of Forrest and
Tang who simulated the single-step solid-on-solid(SOS)
model(which is believed to be in the KPZ universality class)
[17] and gota=0.385 andb=0.240.

Again the results for the BD model are very scattered, and
although there is one result[10] that is close enough forb to
the above-mentioned results, the scaling relationb=a / s2
−ad is only poorly obtained. This is consistently true also for
all the other results in two dimensions. Can the results of BD
simulations serve as serious evidence that the BD model is in
the universality class of the KPZ model? In one dimension
our answer is maybe. In more than one dimension our an-
swer is no. This is not to say whether indeed the BD model
is in a different universality class or that the results of simu-
lations are not good enough or both.(In fact the large scatter
of the results suggests that at least some of the simulations
are indeed not good enough.) This should be compared with
the very accurate exponents obtained in the study of critical
phenomena of translational invariant systems. For those sys-
tems results of very different methods, such as high-
temperature series, momentum-space renormalization, and
real-space renormalization, are known to converge on the
same values with much higher accuracy.

This unfortunate situation suggests a fourth route in which
the question might be answered and this is a direct derivation
of the KPZ equation from the BD model in the continuum
limit. Before discussing previous work in this direction and
our present one, we first describe in short the two models
under consideration.

The BD model in 1+1 dimensions(actually on a two-
dimensional square lattice) can be described as follows. At
time t, the height of the interface at sitei is histd. We choose
a random position above the surface and allow a particle to
fall vertically toward it. The particle sticks to the first site
along the trajectory that has an occupied nearest neighbor. If
no such neighbor exists, it lands on the surface below. Actu-
ally, the version just described is called the nearest-neighbor
(NN) BD model. In another version of the model, also
known as the next-nearest-neighbor(NNN) BD model [2],
which will interest us in this paper, the particle is allowed to
stick to a diagonal neighbor as well, as shown in Fig. 1. At
time t+1, a columni is chosen at random, and the height
hist+1d is then given by

hist + 1d = maxhhi−1std,histd,hi+1stdj + 1. s1d

As mentioned above, the continuum equation that is be-
lieved to capture the essential dynamics of the BD models is
the famous KPZ[8] equation, given by

] h

] t
srW,td = n¹2hsrW,td +

l

2
s¹hd2 + hsrW,td, s2d

wherehsrW ,td is height of the interface at the pointrW and time
t, andhsrW ,td is a noise term such that

khsrW,tdl = 0,

khsrW,tdhsrW8,t8dl = 2D0dsrW − rW8ddst − t8d. s3d

In the last few years most of the efforts in establishing
direct connections between discrete models and continuum
equations have been directed towards developing a general
procedure via formal expansions of discrete equations of mo-
tion [20,22–31]. Usually, the derivation of the continuum
equation is based on regularizing and coarse graining dis-
crete Langevin equations that are obtained from a Kramers-
Moyal expansion of the master equation. In simple words,
transition probabilities are calculated from the microscopic
rules of the model for any given discrete height configuration
hhij. These expressions usually contain discreteu (Heaviside)
andd (Dirac) functions. But since the transition probabilities
are supposed to be continuous functions(so that the expan-
sion that is used there is meaningful), some coarse-graining
procedure is needed. More specifically, this involves expan-
sions of the form

usxd = 1 +o
k=1

`

Akx
k, s4d

as originally suggested in[23]. Sometimes a less restricted
form usxd=1+ok=0

` Akx
k is used. Other suggestions include

usxd = f1 + tanhsCxdg/2, s5d

where C is an arbitrary positive parameter, with the exact
usxd function being obtained in the limitC→` [26]. C is
then used in the expansion as an uncontrolled parameter.
Others[24] use the shifted formusxd=limC→`f1+tanhsChx
+ajdg /2 with aP s0, 1

2
g or a modified version using

arctansCxd [27] or erfsCxd [29] instead of tanhsCxd (each
version has its advantages) in Eq. (5).

In some cases the master equation approach is problem-
atic, as in the case of deriving the KPZ equation[8] from the
ballistic deposition model[25]. Thus a similar approach, yet
more appropriate for that specific case was developed. The
method is based on dealing directly with the discrete Lange-
vin equation rather than with its associated master equation.
Still, expansions like

FIG. 1. Schematic representation of the next-nearest-neighbor
ballistic deposition(NNN BD) model. A particle falls vertically and
sticks to the first site along its trajectory that has an occupied near-
est neighbor. The particle is allowed to stick to a diagonal neighbor
as well.

E. KATZAV AND M. SCHWARTZ PHYSICAL REVIEW E 70, 061608(2004)

061608-2



usx − ad = usxd + o
n=1

`
an

n!
U ]nusyd

] yn U
y=x

s6d

were used. A different, yet closely related Langevin-based
approach used the following representation of the max func-
tion [29,30]:

maxhA,B,Cj = lim
«→0+

« lnheA/« + eB/« + eC/«j, s7d

in order to go from the discrete BD model to the continuum
KPZ equation. Lately[31], influenced by the last representa-
tion, the Edwards-Wilkinson[1] equation was derived from a
discrete model using

usxd = maxhx + a,0j − maxhxj = lim
«→0+

H«

a
lnFesx+ad/« + 1

ex/« + 1
GJ ,

s8d

wherea is any constant in the interval(0, 1].
In spite of these many new and interesting derivations,

one can easily point out three main drawbacks of this last
approach. First, in many cases the derivation is performed in
one dimension, where higher dimensions are not discussed at
all or, specifically, known to cause fatal difficulties(see Ref.
[30], for example).

Second, obviously the mathematics used in the derivation
is not so rigorous. For example, an expansion like the one
given in Eq.(4) is problematic because the Heaviside func-
tion is certainly not analytic around zero. Another example is
when taking an expression like Eq.(5) and expanding it for
small C—while the limiting procedure that is needed for the
equality to hold requiresC→`.

Third, since artificial parameters likeC ande that cannot
always be removed later are present it is not possible to infer
the macroscopic quantities(such as the diffusion coefficient)
from the microscopic rules.

In what follows we will question the relation between the
KPZ and BD models and claim that it is not a coincidence
that such a formal(and ”rigorous”) derivation was not found.
In Sec. II we will show that strictly speaking the continuum
model that describes BD in one dimension is not the KPZ
equation, but rather an equation withu¹hu instead of the
quadratics¹hd2 term. Then, we will claim that in the case of
stochastically driven growth, the difference between the two
equations is not dramatic and just modifies the value of the
coupling constant in the KPZ equation. In Sec. III we show

(using [32,33]) that when the noise is shut down and the
dynamics becomes deterministic, then the difference be-
tween the BD and KPZ models is very important. In Sec. IV,
we make a step forward towards a derivation of a continuum
equation that emanates from the BD model in higher dimen-
sions. However, the equation we find reflects the underlying
structure of the discrete lattice, in the sense that the equation
depends on the directions of the coordinate system induced
by the lattice. Therefore, the equation we obtain, which
breaks rotational symmetry, cannot be conclusively related to
the KPZ equation. At the end, in Sec. V, a brief summary of
the results obtained in this paper is presented.

II. DERIVATION OF A CONTINUUM EQUATION
IN ONE DIMENSION

We begin with the one-dimensional discrete model

hist + 1d = maxhhi−1std,histd,hi+1stdj + histd, s9d

wherehistd is the height of a surface at lattice positioni and
time t (the time is discrete as well). In addition,histd is a
white noise term satisfying

khistdl = 0,

khistdhi8st8dl = 2D0di,i8dt,t8. s10d

This discrete model is a formal expression for ann-particle
NNN BD model[see Eq.(21) in Ref. [30]]. It is well known
that the fact that here we deposit more than one particle per
unit time is not important for the universal behavior of the
model. Actually the same discrete model is used to describe
formation of foam[6].

First we represent the maxh j operator using Heaviside
functions

maxha,bj = ausa − bd + busb − ad. s11d

Thus, for three arguments we also get

maxha,b,cj = ausa − bdusa − cd + busb − adusb − cd

+ cusc − adusc − bd. s12d

Now we represent the Heaviside function using the sign
function

usxd =
1

2
+

1

2
sgnsxd. s13d

Applying these representations to Eq.(9) we get

maxhhi−1std,histd,hi+1stdj = hi−1std
1

4
h1 + sgnfhi−1std − histdgjh1 + sgnfhi−1std − hi+1stdgj + histd

1

4
h1 + sgnfhistd − hi−1stdgjh1

+ sgnfhistd − hi+1stdgj + hi+1std
1

4
h1 + sgnfhi+1std − hi−1stdgjh1 + sgnfhi+1std − histdgj. s14d

Thus, after some simple algebra,
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hist + 1d − histd =
1

4
fhi−1std − 2histd + hi+1stdg −

1

4
histd +

1

4
fhistd − hi−1stdgsgnfhistd − hi−1stdg +

1

4
fhi+1std − hi−1stdgsgnfhi+1std

− hi−1stdg +
1

4
fhi+1std − histdgsgnfhi+1std − histdg +

1

4
hi−1stdsgnfhistd − hi−1stdgsgnfhi+1std − hi−1stdg

−
1

4
histdsgnfhistd − hi−1stdgsgnfhi+1std − histdg +

1

4
hi+1stdsgnfhi+1std − hi−1stdgsgnfhi+1std − histdg + histd. s15d

The last expression is written in such a way that identifying
discrete derivatives is easy. Therefore, denoting the spatial
and temporal increments byDx and Dt, and using the sim-
plifying fact sgnsaxd=sgnsxd (whena.0), we get

] h

] t
sx,td =

sDxd2

4Dt
F1 + sgn2S ] h

] x
DG ]2h

] x2sx,td +
Dx

Dt
U ] h

] x
U

+
1

Dt
hsx,td. s16d

Note that

sgn2sxd = H1, x Þ 0,

0, x = 0.
J

Thus, for a strictly nonsmooth surface(i.e., a surface that is
not flat), almost everywhere we can use the replacement
sgn2s]h/]xd=1 in order to further simplify Eq.(16). In ad-
dition, since in the discrete model we actually tookDx=Dt
=1, we get the final result

] h

] t
sx,td =

1

2

]2h

] x2sx,td + U ] h

] x
U + hsx,td. s17d

This equation is a result of a straightforward exact coarse
graining of Eq.(9). Thus, one can be convinced that the BD
model (at least thisn-particle version of it) does not lead
exactly to the KPZ equation. This fact might explain the
difficulties encountered in the past while deriving KPZ equa-
tion from the BD model.

Symmetry arguments suggest that our one-dimensional
system(17) is indeed in the universality class of the KPZ
equation. This is supported by the results of Ref.[33], which
studied Langevin equations(of the KPZ type) with a gener-
alized u¹hum nonlinearity. They concluded that no matter
what value ofm was taken, KPZ behavior was revealed, as
long as the noise term is present(the case of no noise is
interesting by itself, and will be discussed in Sec. III below).
Thus, this fundamental observation of Amar and Family[33]
establishes the link between Eq.(17) and the KPZ equation,
by simply identifyingm=1 in that equation. Hence, the route
between the BD and KPZ models in one dimension is now
understood, and the common knowledge about the BD model
is justified.

Now, it would be interesting to complete the picture and
to extract the macroscopic coefficients that describe the con-
tinuum KPZ equation that is related to the BD model. First,
the diffusion coefficient can be inferred easily from Eq.(17).

Then, the noise amplitude is unaffected by the coarse grain-
ing. Finally, we would like to identify the coupling constant
l in the KPZ equation(2). However, since the nonlinear term
in Eq. (17) is not in a KPZ form,l cannot be just read from
the equation. Thus, we push further the idea presented in the
previous paragraph and make the identification

u ¹ hu
ku ¹ hul

.
u ¹ hu2

ku ¹ hu2l
, s18d

wherek¯l means steady-state averaging. The last equation
leads tou¹hu.sku¹hul / ku¹hu2lds¹hd2. Plugging this estimate
into Eq. (17) gives the predictionl /2.ku¹hul / ku¹hu2l for
the coupling constant of the KPZ equation(2). The meaning
of this expression is that the KPZ coupling constant that
describes the surface that grows under the BD model is ob-
tained by calculating the two quantitiesku¹hul andku¹hu2l in
a BD simulation(in steady state) and plugging the obtained
averages into the expression given above forl /2.

The last prediction has been checked numerically by us.
We grew a one-dimensional interface on a discrete lattice
with linear sizeL=1024 using the microscopic rules of the
BD model [given by Eq.(9) above]. Using this simulation
we found ku¹hul=0.4705 andku¹hu2l=0.4639, which leads
to the predictionl.2.17. Using an inverse method—that is,
“guessing” the best macroscopic parameters that recover the
same growth process(see Refs.[2,21])—we foundl=2.27,
which supports the rough estimate ofl we suggested above.

Note that if we wanted to use the same kind of replace-
ment of u¹hu by s¹hd2 not in steady state but say at the
beginning of the growth, the coefficient would have to be a
time-dependent function that will eventually approach the
steady-state value that follows from Eq.(18). Thus it might
be tempting to speculate that the short-time dependence of
the coefficient might be the reason for some problems en-
countered in simulations in the numerical determination of
the exponentb.

Up to now we have focused on the common characteris-
tics of the BD and KPZ models. However, as will be seen in
the following two sections, if the noise is turned off or if we
go to higher dimensions, significant differences between the
two models can be found.

III. DETERMINISTIC FLATTENING

In this section we discuss the dynamics of the discrete BD
model and the continuum model withu¹hum nonlinearity for
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m=2 (KPZ) and form=1, when the noise term that appears
in them is eliminated. This limit mimics the physical sce-
nario when the deposited materials stop falling, and the in-
terface relaxes to a flat surface, due to its diffusive term. In
the previous section we showed that in one dimension the
KPZ model and the continuum version of the BD model are
equivalent in steady state, where the flattening of the surface
due to diffusion is balanced by the external noise. It would
be also interesting to study the relation between the two
models in the absence of noise.

The starting point of this discussion is the observation of
Krug and Spohn[32] regarding a deterministic continuum
equation of the general form

] h

] t
= n¹2h + gu ¹ hum s19d

(wheremù1), which describes the smoothing of an initially
rough surface under deterministic growth. They argued that
if the initial surface has roughness exponenta, the scaling
relation

zd = minh2,ms1 − ad + aj s20d

should hold, wherezd is a dynamic exponent for determinis-
tic evolution, which, similar to the stochastically driven case,
determines the time scale of the decaying width(see Fig. 2).

Influenced by this work, Amar and Family[33] made a
systematic study of such surface growth equations with a
generalized nonlinearity and found good agreement between
the scaling relation and the numerical integration of Eq.(19).
We also performed a numerical integration, using the same
integration scheme as in Ref.[33] [the coefficientsn and g
were taken from Eq.(17) and using the result of the previous
section] for the casesm=1 [Eq. (17)] and m=2 (KPZ) in 1
+1 dimensions. We also used a rough surface witha= 1

2 as
an initial condition. A scaling plot of our results for the sur-
face widthWsL ,td for m=1 versust /Ld

z with zd=1 is given in
Fig. 2(a), and a similar scaling plot form=2 with zd= 3

2 is
shown in Fig. 2(b).

As one can see, the scaling is good in both cases, in agree-
ment with the scaling relation(20) and therefore consistent
with Refs. [32,33]. Thus, the difference between the deter-
ministic dynamics of the KPZ equation and that of Eq.(17)
is now self-evident and not new. Two questions should be
asked here. Our derivation of Eq.(17) does not depend on
the presence of noise. Therefore, we might expect that even
when deterministic dynamics is considered, discrete BD will
be equivalent to them=1 case rather than to them=2 case
(KPZ). The first question is whether this is indeed the case.
The second question regards the predicted values for the dif-
fusion coefficient(namely,n= 1

2) and the coupling(i.e., the
coefficient of the u¹hum term—namely, g=1) for the
n-particle NNN BD model that we read from Eq.(17). The
question is whether this prediction is a sensible one.

In order to answer these questions we implemented the
NNN BD model [whose sticking rules are given by Eq.(9)]
on a two-dimensional square lattice(1+1 dimensions) and
measured the surface widthWsL ,td of the flattening surface,
using a rough surface witha= 1

2 as an initial condition(just
like the continuum models above). We present the results in
Fig. 3.

As can be seen in Fig. 3, the deterministic dynamics of
the discrete model is evidently the one we have seen for the
m=1 continuum equation, since the data collapse in the scal-
ing plot with zd=1 is good. Moreover, Figs. 2(a) and 3 look
pretty much the same. The main difference between the two
is the rounded tail in Fig. 2(a) aroundt /L=0.5 compared to
the sharp transition in Fig. 3. This difference can be ac-
counted for by the fact that the numerical integration of the

FIG. 2. Scaling plot for the deterministic equation(19) for L
=256, 512, and 1024 with(a) m=1 usingzd=1 and with(b) m=2
usingzd= 3

2.

FIG. 3. Scaling plot for the deterministic NNN BD model given
by Eq. (9) for L=256, 512, and 1024 usingzd=1.
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continuum equation used a small time incrementsDt=0.05d
while the discrete growth model used a much larger one
sDt=1d. This implies a better temporal resolution around
t /L=0.5 by numerical integration when compared to the
simulation. In addition, the similarity between the two scal-
ing plots means that the predicted macroscopic quantities are
consistent with the results obtained from the simulation.

In this section we studied the difference between the de-
terministic versions of the BD and KPZ models. We also
showed that Eq.(17) captures the dynamical behavior of the
BD model even in the deterministic regime. This discussion
served another purpose—namely, of providing a numerical
support for then andl we found from the formal derivation.

IV. RESULTS FOR HIGHER DIMENSIONS

In this section we generalize the formal derivation given
in Sec. II to higher dimensions. As will be seen, the deriva-

tion is not exactly the same, and the resulting continuum
equation is not a simple generalization of the one-
dimensional equation(17).

We begin with then-particle NNN BD model ind dimen-
sions(discretized on a cubic hyperlattice):

hrWst + 1d = maxhhrWstd,hrW+x̂1
std,hrW−x̂1

std,…,hrW+x̂d
std,hrW−x̂d

stdj

+ hrWstd, s21d

wherex̂i is a unit vector in theith direction.
As in Sec. II, using Eqs.(12) and (13), coarse graining

(space), and using the simplifications sgnsaxd=sgnsxd (for
aÞ0) and sgn2s]h/]xid=1 (which is again true almost any-
where), we get

22dhrWst + 1d = 2o
i=1

d HhrW+x̂i
stdF1 + sgnS ] h

] xi
DGp

j=1

d

jÞi

F1 + sgnS ] h

] xi
−

] h

] xj
DGF1 + sgnS ] h

] xi
+

] h

] xj
DG + hrW−x̂i

stdF1 − sgnS ] h

] xi
DG

3p
j=1

d

jÞi

F1 − sgnS ] h

] xi
−

] h

] xj
DGF1 − sgnS ] h

] xi
+

] h

] xj
DGJ + hrWstd. s22d

Using 1±sgnsxd=2us±xd

we get

hrWst + 1d = o
i=1

d HhrW+x̂i
stduS ] h

] xi
D

3p
j=1

d

jÞi

FuS ] h

] xi
−

] h

] xj
DuS ] h

] xi
+

] h

] xj
DG

+ hrW−x̂i
stduS−

] h

] xi
Dp

j=1

d

jÞi

FuS−
] h

] xi
+

] h

] xj
D

3uS−
] h

] xi
−

] h

] xj
DGJ + ĥrWstd, s23d

whereĥrWstd=2−2dhrWstd. Notice that

usadusa + xdusa − xd = usadusa − uxud = usadusuau − uxud,

s24d

and thus

hrWst + 1d = o
i=1

d

p
j=1

d

jÞi

uSU ] h

] xi
U − U ] h

] xj
UDFhrW+x̂i

stduS ] h

] xi
D

+ hrW−x̂i
stduS−

] h

] xi
DG + ĥrWstd. s25d

Using once again the relationusxd= 1
2f1+sgnsxdg and reorga-

nizing the last equation leads us to

hrWst + 1d =
1

2o
i=1

d

p
j=1

d

jÞi

uSU ] h

] xi
U − U ] h

] xj
UDFhrW+x̂i

std − 2hrWstd

+ hrW−x̂i
std + 2

] h

] xi
sgnS ] h

] xi
D + 2hrWstdG + ĥrWstd,

s26d

Coarse graining in both space and time gives us the final
result

] h

] t
srW,td = o

i=1

d S1

2

]2h

] xi
2 + U ] h

] xi
UDp

j=1

d

jÞi

uSU ] h

] xi
U − U ] h

] xj
UD

+ ĥsrW,td. s27d
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This equation might seem messy for a second. However,
it has a very simple structure. First, ford=1 it collapses
trivially to Eq. (17). Then, in higher dimensions, the expres-
sion

p
j=1

d

jÞi

uSU ] h

] xi
U − U ] h

] xj
UD

picks the directionm in space along which the gradient is
maximal, and the considered part of the local growth rate has
a contribution from that direction alone,

1

2

]2h

] xm
2 + U ] h

] xm
U .

Actually, taking a glance at the original discrete model, this
result is not such a surprise since both formulations contain
this “maximal” growth ingredient in them.

The above is in a sense not really a continuum equation in
dimension larger than 1, since the directions of original lat-
tice axes are still present and the symmetry under rotations
present in the KPZ model is not present in our Eq.(27). This
means that the two models have different symmetries and
therefore there is noa priori reason for them to belong to the
same universality class.(This situation is very different from
what happens, say, in the Ising model, where the discrete
onsidfsnsid−sig2 [nsid being a nearest neighbor ofi], which is
not rotationally invariant, is safely replaced byf¹sg2, which
is rotationally invariant.) The situation as we see it is the
following: None of the four suggested routes to check
whether the two models belong to the same universality class
yields a convincing answer. To our knowledge a fixed point
system corresponding to both systems is not known. In spite
of the fact that a BD simulation is relatively simple, it seems
that massive work was done only in one and two dimensions.
In two dimensions the scatter of the results and the violation
of the scaling relation connectinga and b cannot really be
interpreted as the exponents being those of the KPZ system.

The symmetry argument does not work as there is a symme-
try not shared by the two models. Our final conclusion is that
we do not see, at present, any compelling reason for the two
models to belong to the same universality class.

V. SUMMARY AND CONCLUSIONS

In this paper we discussed the connection between a dis-
crete growth model, the next-nearest-neighbor ballistic depo-
sition, and a continuum equation, the Kardar-Parisi-Zhang
equation. It has been believed for the last two decades[2]
that the BD model belongs to the KPZ universality class;
however, a formal derivation was lacking. In this work, we
show that the absence of a formal derivation is not acciden-
tal, but rather reflects significant differences between the
continuum equation that describes the BD model and the
KPZ equation. This difference, which is mild in one dimen-
sion in the presence of noise, may become crucial in higher
dimensions. It is also reflected in the different deterministic
one-dimensional flattening of the surface, although this is not
surprising. Our main conclusion is that mainly due to the
form of our continuum equation in dimensions higher than 1,
which breaks the rotation symmetry, the burden of proof has
shifted and heavy simulations are needed, in order to obtain
the BD exponents to an accuracy that will enable to answer
whether it belongs to the KPZ universality class ford.1 or
not. The goal of such simulations should be an accuracy
compared to that in critical phenomena. If that is achieved,
we will be able to tell with much higher certainty if the two
models belong to the same universality class or not.
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